Abstract

This article develops a general theory for minimum norm interpolating estimators and regularized empirical risk minimizers (RERM) in linear models in the presence of additive, potentially adversarial, errors. In particular, no conditions on the errors are imposed. A quantitative bound for the prediction error is given, relating it to the Rademacher complexity of the covariates, the norm of the minimum norm interpolator of the errors and the size of the subdifferential around the true parameter. The general theory is illustrated for Gaussian features and several norms: The ℓ1, ℓ2, group Lasso and nuclear norms. In case of sparsity or low-rank inducing norms, minimum norm interpolators and RERM yield a prediction error of the order of the average noise level, provided that the overparameterization is at least a logarithmic factor larger than the number of samples and that, in case of RERM, the regularization parameter is small enough. Lower bounds that show near optimality of the results complement the analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.