Abstract
This paper analyses the robustness of Least-Squares Monte Carlo, a technique proposed by Longstaff and Schwartz (2001) for pricing American options. This method is based on least-squares regressions in which the explanatory variables are certain polynomial functions. We analyze the impact of different basis functions on option prices. Numerical results for American put options show that this approach is quite robust to the choice of basis functions. For more complex derivatives, this choice can slightly affect option prices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.