Abstract

Angiogenesis, the formation of blood vessels, may be described as a process whereby capillary sprouts are formed in response to externally supplied chemical stimuli. The sprouts then develop and organize themselves into a dendritic structure. Angiogenesis occurs during embryogenesis, wound healing, arthritis and during the growth of solid tumours. In this paper we present a mathematical model which describes the rŏle of angiogenesis as observed during (soft-tissue) wound healing. We focus attention on certain principal players involved in this complex process, namely capillary tips, capillary sprouts, fibroblasts, macrophage-derived chemical attractants, oxygen and extracellular matrix. The model consists of a system of nonlinear partial differential equations describing the interactions in space and time of the above substances. Numerical simulations are presented which are in very good qualitative agreement with experimental observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.