Abstract

A probabilistic fracture mechanics model is employed to estimate the failure probability of axially cracked steam generator tubes. The model estimates the failure probability from the random changes of the influencing parameters such as tube and crack geometry, material properties and non-destructive examination results, reliability and sizing accuracy and stable crack propagation. The performance of the model is illustrated by a numerical example. A steam generator tubing severely affected by the stress corrosion cracking is studied during most unfavourable accidental conditions. Two different plugging approaches are analyzed and the quality is compared, showing the superior performance of crack length oriented approach over tube wall thickness reduction both in terms of SG failure probability and extent of plugging. Thus, apart from setting the acceptable SG failure probability, all elements for the risk-based SG lifetime optimisation are provided on the example of stress corrosion cracking in the tube expansion transition zone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.