Abstract
Two important mathematical constructions are: the construction of the rational s from the integers and the construction of the reals from the rationals. The first process can be carried out for any ring, producing its maximal ring of quotients [4, 5]. The second process can be carried out for any partially ordered set producing its Dedekind-MacNeille completion [2, p. 58]. We will show that for Boolean rings, which are both rings and partially ordered sets, the two constructions coincide.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.