Abstract

Experimental and comparative studies suggest that a major determinant of increased ossification of the mandibular symphysis is elevated masticatory stress related to a mechanically challenging diet. However, the morphology of this joint tracks variation in dietary properties in only some mammalian clades. Extant anthropoid primates are a notable exception: synostosis is ubiquitous in this speciose group, despite its great age and diverse array of feeding adaptations. One possible explanation for this pattern is that, once synostosis evolves, reversion to a lesser degree of fusion is unlikely or even constrained. If correct, this has important implications for functional and phylogenetic analyses of the mammalian feeding apparatus. To test this hypothesis, we generated a molecular tree for 76 vespertilionoid and noctilionoid chiropterans using Bayesian phylogenetic analysis and examined character evolution using parsimony and likelihood ancestral-state reconstructions along with the binary state speciation and extinction (BiSSE) model. Results indicate that reversals have occurred within Vespertilionoidea. In contrast, noctilionoids exhibit an anthropoid-like pattern, which suggests that more detailed comparisons of the functional and developmental bases for fusion in these bat clades may provide insight into why fusion is maintained in some lineages but not in others. Potential functional and developmental explanations for the lack of reversal are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call