Abstract

Anthropogenic forcing of the atmosphere by greenhouse gases (GHG) and ozone-depleting substances has provided an unintended test of the robustness of current understanding of the physics and chemistry of the middle atmosphere, that is, the stratosphere and mesosphere. We explore this topic by examining how well anthropogenic changes can be simulated by modern, comprehensive numerical models. Specifically, we discuss the simulations of trends in global mean temperature; the development of the ozone hole and its impact on the dynamics of the Southern Hemisphere, both in the stratosphere and troposphere; trends in the stratospheric Brewer-Dobson circulation; and the response of the quasi-biennial oscillation (QBO) to increasing burdens of CO2 . We find that, in most of these cases, numerical simulation is able to reproduce observed changes and provide physical insights into the relevant mechanisms. Simulation of the QBO is on a less firm footing. Although many numerical models can now generate realistic QBOs, future projections of its behavior under the increasing burdens of GHG are inconsistent and even contradictory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.