Abstract
This article revolves around the properties on the Lp scale of spaces of the integral kernel operator K whose kernel function is the reproducing kernel of the Segal-Bargmann space. We find sufficient conditions on p and q for K to be a Hille-Tamarkin (and hence compact) operator from Lp to Lq with respect to the standard Gaussian measure as well as with respect to a weighted measure on the codomain space. We also find sufficient conditions for K to be unbounded with respect to the standard Gaussian measure. Finally we give sufficent conditions for a Toeplitz operator to be Hille-Tamarkin on the Lp scale of spaces with respect to both the standard Gaussian measure and a weighted measure on the codomain space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.