Abstract
In fuzzy logic, connectives have a meaning that, can frequently be known through the use of these connectives in a given context. This implies that there is not a universal-class for each type of connective, and because of that several continuous t-norms, continuous t-conorms and strong negations, are employed to represent, respectively, the and, the or, and the not. The same happens with the case of the connective If/then for which there is a multiplicity of models called T-conditionals or implications. To reinforce that there is not a universal-class for this connective, four very simple classical laws translated into fuzzy logic are studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.