Abstract

For analytic functions the remainder term of Gauss–Radau quadrature formulae can be represented as a contour integral with a complex kernel. We study the kernel on elliptic contours with foci at the points ± 1 and a sum of semi-axes ϱ > 1 for the Chebyshev weight function of the second kind. Starting from explicit expressions of the corresponding kernels the location of their maximum modulus on ellipses is determined. The corresponding Gautschi's conjecture from [On the remainder term for analytic functions of Gauss–Lobatto and Gauss–Radau quadratures, Rocky Mountain J. Math. 21 (1991), 209–226] is proved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.