Abstract
Bounds on the reliability function for the discrete memoryless relay channel are derived using the method of types. Two achievable error exponents are derived based on partial decode-forward and compress-forward, which are well-known superposition block-Markov coding schemes. The derivations require combinations of the techniques involved in the proofs of Csiszár-Körner-Marton's packing lemma for the error exponent of channel coding and Marton's type covering lemma for the error exponent of source coding with a fidelity criterion. The decode-forward error exponent is evaluated on Sato's relay channel. From this example, it is noted that to obtain the fastest possible decay in the error probability for a fixed effective coding rate, one ought to optimize the number of blocks in the block-Markov coding scheme assuming the blocklength within each block is large. An upper bound on the reliability function is also derived using ideas from Haroutunian's lower bound on the error probability for point-to-point channel coding with feedback.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.