Abstract
In this paper, we investigate a large cooperative wireless network with relay nodes, in which cooperation is enabled through physical-layer network coding (PLNC). Specifically, we study the impact of the relay selection on the network capacity with power constraints in two scenarios. First, we consider the basic PLNC model (a.k.a., the ARB model), in which one pair of source nodes (A, B) exchange messages via a selected relay node (R). Given the power constraint, we derive the optimal relay selection and power allocation that maximize the sum capacity, defined as the summation of the capacity for two source-destination channels. Based on results obtained above, we then consider a more general scenario with multiple pairs of source nodes. Assuming the constant power constraint, we derive the upper bound of the minimal sum capacity of any source pair. The optimal power allocation among multiple source pairs is also derived. To validate these theoretical results, we also provide two relay selection strategies: a modified optimal relay assignment strategy and a novel middle point strategy for maximizing the minimal sum capacity of any source pair.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.