Abstract

The distribution function of the relative velocity in a two-body reaction of nonrelativistic uncorrelated particles is derived for general cases of given distribution functions of single particle velocities. The distribution function is then used in calculations of thermonuclear reaction rates. As an example, we take the Tsallis non-Maxwellian distribution, and show that the distribution function of the relative velocity is different from the Tsallis distribution. We identify an inconsistency in previous studies of nuclear reaction rates within Tsallis statistics, and derive revised nuclear reaction rates. Utilizing the revised rates, accurate results of big bang nucleosynthesis are obtained for the Tsallis statistics. For this application it is more difficult to reduce the primordial 7Li abundance while keeping other nuclear abundances within the observational constraints. A small deviation from a Maxwell-Boltzmann distribution can increase the D abundance and slightly reduce 7Li abundance. Although it is impossible to realize a 7Li abundance at the level observed in metal-poor stars, a significant decrease is possible while maintaining a consistency with the observed D abundance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.