Abstract

Volcanic hotspots are thought to be fed by hot, active upwellings from the deep mantle, with excess temperatures (Tex) ~100° to 300°C higher than those of mid-ocean ridges. However, Tex estimates are limited in geographical coverage and often inconsistent for individual hotspots. We infer the temperature of oceanic hotspots and ridges simultaneously by converting seismic velocity to temperature. We show that while ~45% of plume-fed hotspots are hot (Tex ≥ 155°C), ~15% are cold (Tex ≤ 36°C) and ~40% are not hot enough to actively upwell (50°C ≤ Tex ≤ 136°C). Hot hotspots have an extremely high helium-3/helium-4 ratio and buoyancy flux, but cold hotspots do not. The latter may originate at upper mantle depths. Alternatively, the deep plumes that feed them may be entrained and cooled by small-scale convection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call