Abstract

Abstract The response of the Circumpolar Current to changing winds has been the subject of much debate. To date most theories of the current have tried to predict the transport using various forms of momentum balance. This paper argues that it is also important to consider thermodynamic as well as dynamic balances. Within large-scale general circulation models, increasing eastward winds within the Southern Ocean drive a northward Ekman flux of light water, which in turn produces a deeper pycnocline and warmer deep water to the north of the Southern Ocean. This in turn results in much larger thermal wind shear across the Circumpolar Current, which, given relatively small near-bottom velocities, results in an increase in Antarctic Circumpolar Current (ACC) transport. The Ekman flux near the surface is closed by a deep return flow below the depths of the ridges. A simple model that illustrates this picture is presented in which the ACC depends most strongly on the winds at the northern and southern edges of ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.