Abstract
This paper investigates the relationship between the stochastic maximum principle and the dynamic programming principle for singular stochastic control problems. The state of the system under consideration is governed by a stochastic differential equation, with nonlinear coefficients, allowing both classical control and singular control. We show that the necessary conditions for optimality, obtained earlier, are in fact sufficient provided some concavity conditions are fulfilled. In a second step, we prove a verification theorem and we show that the solution of the adjoint equation coincides with the derivative of the value function. Finally, using these results, we solve explicitly an example.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.