Abstract

High power pulsed magnetron sputtering (HPPMS) is used to deposit CrN films without external heating at different peak target currents, while the average current is kept constant. Films are also grown by dc magnetron sputtering (dcMS), for reference. The plasma properties, the deposition rate and the morphology of the films are investigated. The plasma analysis reveals that HPPMS provides higher fluxes of ionized species (both gas and sputtered) to the growing film, as compared with dcMS. In addition, the ionic bombardment during HPPMS increases, when the peak target current is increased. The HPPMS films exhibit changes of the density and the surface roughness as the peak target current increased, while the deposition rate decreases drastically. Furthermore, it is found that different thin-film morphologies are obtained starting from a porous columnar morphology for the dcMS films, which turns to a dense columnar one at low peak target currents and ends up to a featureless morphology at high peak target currents for the films grown by HPPMS. A new structure zone model specific for high ionization sputtering is, therefore, outlined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call