Abstract

Direct numerical simulations (DNS) of flow over triangular and rectangular riblets in a wide range of size and Reynolds number have been carried out. The flow within the grooves is directly resolved by exploiting the immersed-boundary method. It is found that the drag reduction property is primarily associated with the capability of inhibiting vertical velocity fluctuations at the plane of the crests, as in liquid-infused surfaces (LIS) devices. This is mimicked in DNS through artificial suppression of the vertical velocity component, which yields large drag decrease, proportionate to the riblets size. A parametrization of the drag reduction effect in terms of the vertical velocity variance is found to be quite successful in accounting for variation of the controlling parameters. A Moody-like friction diagram is thus introduced which incorporates the effect of slip velocity and a single, geometry-dependent parameter. Reduced drag-reduction efficiency of LIS-like riblets is found as compared to cases with artificially imposed slip velocity. Last, we find that simple wall models of riblets and LIS-like devices are unlikely to provide accurate prediction of the flow phenomenon, and direct resolution of flow within the grooves in necessary.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.