Abstract

The paper is devoted to the study of well-known combinatorial functions on the symmetric group S n —the major index maj, the descent number des, and the inversion number inv—from the representation-theoretic point of view. We show that these functions generate the same ideal in the group algebra C[S n ], and the restriction of the left regular representation of the group S n to this ideal is isomorphic to its representation in the space of n×n skew-symmetric matrices. This allows us to obtain formulas for the functions maj, des, and inv in terms of matrices of an exceptionally simple form. These formulas are applied to find the spectra of the elements under study in the regular representation, as well as derive a series of identities relating these functions to one another and to the number fix of fixed points.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.