Abstract

The nature of the empirical proportionality constant A in the relation L = Ah 2 between total number of citations L of the publication output of an author and his/her Hirsch index h is analyzed using data of the publication output and citations for six scientists elected to the membership of the Royal Society in 2006 and 199 professors working in different institutions in Poland. The main problem with the h index of different authors calculated by using the above relation is that it underestimates the ranking of scientists publishing papers receiving very high citations and results in high values of A. It was found that the value of the Hirsch constant A for different scientists is associated with the discreteness of h and is related to the tapered Hirsch index h T by A 1/2 ≈ 1.21h T. To overcome the drawback of a wide range of A associated with the discreteness of h for different authors, a simple index, the radius R of circular citation area, defined as R = (L/π)1/2 ≈ h, is suggested. This circular citation area radius R is easy to calculate and improves the ranking of scientists publishing high-impact papers. Finally, after introducing the concept of citation acceleration a = L/t 2 = π(R/t)2 (t is publication duration of a scientist), some general features of citations of publication output of Polish professors are described in terms of their citability. Analysis of the data of Polish professors in terms of citation acceleration a shows that: (1) the citability of the papers of a majority of physics and chemistry professors is much higher than that of technical sciences professors, and (2) increasing fraction of conference papers as well as non-English papers and engagement in administrative functions of professors result in decreasing citability of their overall publication output.Electronic supplementary materialThe online version of this article (doi:10.1007/s11192-012-0805-7) contains supplementary material, which is available to authorized users.

Highlights

  • For over two decades there has been an increasing interest in the evaluation of the scientific research output of scientists in terms of numerical indexes quantifying it unequivocally

  • In order to account for the effects of such factors as publication time t, publication rate DN and scientific field, here we introduce and use concepts of citation acceleration a and circular citation radius rate (i.e., R-rate)

  • The nature of the Hirsch constant A in the classical relation L = Ah2 between total number of citations L of the publication output of an author and his/her Hirsch index h, advanced by Hirsch (2005), is analyzed using data of the publication output and citations for six scientists elected to the membership of the Royal Society in 2006 and 199 selected physics, chemistry and technical sciences professors working in selected traditional universities, technical universities and Polish Academy of Sciences (PASc) research institutes in Poland

Read more

Summary

Introduction

For over two decades there has been an increasing interest in the evaluation of the scientific research output of scientists in terms of numerical indexes quantifying it unequivocally. During the last 6 years, the introduction of h index by Hirsch (2005) has provided enormous impetus in finding tools to quantify the research output of individual scientists, university faculties and research institutions. The Hirsch index h is defined as the highest number of papers of an author that received h or more citations. The main drawback of the h index of an author is that it does not count citations received by h papers with citations ln [ h and (n - h) papers having citations ln \ h. Among the different h variants, the tapered h index (hT), proposed by Anderson et al (2008), is one which takes into account the total number of citations

Objectives
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.