Abstract
AbstractSolving nonlinear evolution equations is an important issue in the mathematical and physical sciences. Therefore, traditional methods, such as the method of characteristics, are used to solve nonlinear partial differential equations. A general method for determining analytical solutions for partial differential equations has not been found among traditional methods. Due to the development of symbolic computational techniques many alternative methods, such as hyperbolic tangent function methods, have been introduced in the last 50 years. Although all of them were introduced as a new method, some of them are similar to each other. In this study, we examine the following four important methods intensively used in the literature: the tanh–coth method, the modified Kudryashov method, the F-expansion method and the generalized Riccati equation mapping method. The similarities of these methods attracted our attention, and we give a link between the methods and a system of projective Riccati equations. It is possible to derive new solution methods for nonlinear evolution equations by using this connection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.