Abstract

In the literature, the notions of lumpability and time reversibility for large Markov chains have been widely used to efficiently study the functional and non-functional properties of computer systems. In this paper we explore the relations among different definitions of lumpability (strong, exact and strict) and the notion of time-reversed Markov chain. Specifically, we prove that an exact lumping induces a strong lumping on the reversed Markov chain and a strict lumping holds both for the forward and the reversed processes. Based on these results we introduce the class of \(\lambda \rho \)-reversible Markov chains which combines the notions of lumping and time reversibility modulo state renaming. We show that the class of autoreversible processes, previously introduced in Marin and Rossi (Proceedings of the IEEE 21st international symposium on modeling, analysis and simulation of computer and telecommunication systems MASCOTS, pp. 151–160, 2013), is strictly contained in the class of \(\lambda \rho \)-reversible chains.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call