Abstract

We establish that the summability of the series ∑εn is the necessary and sufficient criterion ensuring that every (1+εn)-bounded Markushevich basis in a separable Hilbert space is a Riesz basis. Further we show that if nεn→∞, then in ℓ2 there exists a (1+εn)-bounded Markushevich basis that under any permutation is non-equivalent to a Schauder basis. We extend this result to any separable Banach space. Finally we provide examples of Auerbach bases in 1-symmetric separable Banach spaces whose no permutations are equivalent to any Schauder basis or (depending on the space) any unconditional Schauder basis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.