Abstract

A theory for calculating time– and frequency–domain optical spectra of pigment–protein complexes is presented using a density matrix approach. Non-Markovian effects in the exciton–vibrational coupling are included. A correlation function is deduced from the simulation of 1.6 K fluorescence line narrowing spectra of a monomer pigment–protein complex (B777), and then used to calculate fluorescence line narrowing spectra of a dimer complex (B820). A vibrational sideband of an excitonic transition is obtained, a distinct non-Markovian feature, and agrees well with experiment on B820 complexes. The theory and the above correlation function are used elsewhere to make predictions and compare with data on time–domain pump–probe spectra and frequency–domain linear absorption, circular dichroism and fluorescence spectra of Photosystem II reaction centers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.