Abstract

AbstractUsing a novel in-situ scanning tunneling microcopy integrated into a 200Kv transmission electron microscopy, we have shown that boron nitride nanotubes (BNNTs) posses remarkable flexibility and convert from insulator to semi-conductor upon bending. To measure the electrical properties, the BNNT was bent between two gold contacts constructing a metal-semiconductor-metal circuit. The resistivity of the BNNT under bending condition was measured to be ∼460 MΩ from the experimentally recorded current-voltage data. Our finding suggests that mechanical straining can improve the electrical transport in BN nanotubes via reducing the band gap.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.