Abstract

We derive an identity relating the growth exponent of early-time OTOCs, the pre-exponential factor, and a third number called “branching time”. The latter is defined within the dynamical mean-field framework, namely, in terms of the retarded kernel. This identity can be used to calculate stringy effects in the SYK and similar models; we also explicitly define “strings” in this context. As another application, we consider an SYK chain. If the coupling strength βJ is above a certain threshold and nonlinear (in the magnitude of OTOCs) effects are ignored, the exponent in the butterfly wavefront is exactly 2π/β.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.