Abstract

The definition and simulation of fractional Brownian motion are considered from the point of view of a set of coherent fractional derivative definitions. To do it, two sets of fractional derivatives are considered: (a) the forward and backward and (b) the central derivatives, together with two representations: generalised difference and integral. It is shown that for these derivatives the corresponding autocorrelation functions have the same representations. The obtained results are used to define a fractional noise and, from it, the fractional Brownian motion. This is studied. The simulation problem is also considered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.