Abstract

It is shown that there is a simple relation between master equation and random walk solutions. We assume that the random walker takes steps at random times, with the time between steps governed by a probability density ψ(Δt). Then, if the random walk transition probability matrix M and the master equation transition rate matrix A are related by A = (M − 1)/τ1, where τ1 is the first moment of Ψ(t) and thus the average time between steps, the solutions of the random walk and the master equation approach each other at long times and are essentially equal for times much larger than the maximum of (τn/n!)1/n, where τn is the nth moment of ψ(t). For a Poisson probability density ψ(t), the solutions are shown to be identical at all times. For the case where A ≠ (M − 1)/τ1, the solutions of the master equation and the random walk approach each other at long times and are approximately equal for times much larger than the maximum of (τn/n!)1/n if the eigenvalues and eigenfunctions of A and (M − 1)/τ1 are approximately equal for eigenvalues close to zero.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.