Abstract

A compensation model for semi-insulating CdTe:Cl based on a single dominant deep level 0.725 eV above the valence band is proposed. The model is corroborated by experimental evidence: resistivity measurements as a function of temperature on bulk crystals and stationary electric field distributions in Ohmic/Schottky radiation detectors, obtained by the Pockels effect. The latter are in close agreement with the numerical solutions of transport equations when considering the deep centre concentration in the range 2 − 4 × 1012 cm−3, and a compensation ratio R = 2.1, this one being consistent with an original ambipolar analysis of resistivity. More generally, the approach elucidates the role of electrical contacts and deep levels in controlling the electric fields in devices based on compensated materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.