Abstract

This paper is concerned with the numerical solution of stiff initial value problems for systems of ordinary differential equations using Runge-Kutta methods. For these and other methods Frank, Schneid and Ueberhuber [7] introduced the important concept ofB-convergence, i.e. convergence with error bounds only depending on the stepsizes, the smoothness of the exact solution and the so-called one-sided Lipschitz constant β. Spijker [19] proved for the case β<0 thatB-convergence follows from algebraic stability, the well-known criterion for contractivity (cf. [1, 2]). We show that the order ofB-convergence in this case is generally equal to the stage-order, improving by one half the order obtained in [19]. Further it is proved that algebraic stability is not only sufficient but also necessary forB-convergence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.