Abstract
The inner membrane of mitochondria possesses a pH-regulated anion uniporter which is activated by depletion of matrix divalent cations with A23187 (Beavis, A. D., and Garlid, K. D. (1987) J. Biol. Chem. 262, 15085-15093). It is now shown that Cl- transport through this pathway is inhibited by Mg2+ and Ca2+. There appear to be two sites for inhibition by Mg2+. One has an IC50 = 38 microM at pH 7.4 and appears to be on the inside since it is only observed in the presence of A23187 (10 nmol/mg). The other has an IC50 = 440 microM at pH 7.4 and appears to be on the outside since it is observed in mitochondria pretreated with very low doses of A23187 (0.25 nmol/mg or less) and in A23187-pretreated mitochondria washed to remove A23187. Ca2+ is found to inhibit anion uniport in the presence or absence of A23187 with an IC50 of about 17 microM. In contrast to these findings Cl- uniport, activated by addition of valinomycin to respiring mitochondria without depleting endogenous Mg2+ is found to be very insensitive to exogenous Mg2+, being inhibited with an IC50 of 3.2 mM. This is explained by examination of the pH dependence of the Mg2+ IC50 in non-respiring mitochondria. The internal IC50 is found to be pH-dependent, rising to about 250 microM at pH 8.4. The external IC50 is also pH-dependent, rising to 2.5 mM or above at pH 8.4. These data are consistent with a model in which Mg2+ can only bind to the protein when it is protonated at a site with a pK of about 6.8 located in the matrix. Thus, both the intrinsic activity of the uniporter and its inhibition by Mg2+ appear to be regulated by matrix protons. This makes the rate of anion uniport much more sensitive to changes in matrix pH which is physiologically advantageous for its proposed role in volume homeostasis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.