Abstract

The carbon monoxide (CO) concentrations observed at Mt. Waliguan in China (WLG), Ulaan Uul in Mongolia (UUM), Tae-ahn Peninsula in Korea (TAP) and Ryori in Japan (RYO) were analysed between 1991 and 2008. The average annual concentration of CO, a toxic air pollutant, was the highest at TAP (235±44 ppb), followed by RYO (169±35 ppb), UUM (154±27 ppb) and WLG (138±24 ppb). These data obtained in East Asia were also compared with CO data from Mauna Loa, Hawaii. CO tends to be highest in spring and lowest in summer in East Asia, with the exception of WLG. TAP had the highest CO concentrations in all seasons compared with WLG, UUM and RYO, and displays a wide short-term variability in concentration. This is caused by large-scale air pollution owing to its downwind location, close to continental East Asia. CO concentrations observed at TAP were analysed as follows: according to the origin of the isentropic backward trajectory and its transport passage; as continental background airflows (CBG); regionally polluted continental airflows (RPC); oceanic background airflows (OBG); and partly perturbed oceanic airflows (PPO). The high concentrations of CO at TAP are because of the airflow originating from the East Asian continent, rather than the North Pacific. RPCs, which pass through eastern China, appear to have high CO concentrations in spring, autumn and winter. It is noteworthy that the overall trend at TAP does not show an increase despite the fact that energy use in China approximately doubled from 1991 to 2008. OBGs, however, are affected by North Pacific air masses with low CO concentrations in summer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call