Abstract

The paper proposes an extension of the approaches of gradient elasticity of deformable media, which consists in using the fundamental property of solutions of the gradient theory - ​the smoothing of singular solutions of the classical theory of elasticity, converting them into a regular class not only for the problems of micromechanics, where the length scale parameter is of the order of the materials characteristic size, but for macromechanical problems. In these problems, the length scale parameter, as a rule, can be found from the macro-experiments or numerical experiments and does note have an extremely small values. It is shown, by attracting numerical three-dimensional modeling, that even one-dimensional gradient solutions make it possible to clarify the stress distribution in the constrained zones of the body and in the area of the loads application. It is shown that additional length scale parameters of the gradient theory are related with specific boundary effects and can be associated with structural geometric parameters and loading conditions that determine the features of the classical three-dimensional solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.