Abstract
Abstract We investigate error bounds for numerical solutions of divergence structure linear elliptic partial differential equations (PDEs) on compact manifolds without boundary. Our focus is on a class of monotone finite difference approximations, which provide a strong form of stability that guarantees the existence of a bounded solution. In many settings including the Dirichlet problem, it is easy to show that the resulting solution error is proportional to the formal consistency error of the scheme. We make the surprising observation that this need not be true for PDEs posed on compact manifolds without boundary. We propose a particular class of approximation schemes built around an underlying monotone scheme with consistency error $O(h^{\alpha })$. By carefully constructing barrier functions, we prove that the solution error is bounded by $O(h^{\alpha /(d+1)})$ in dimension $d$. We also provide a specific example where this predicted convergence rate is observed numerically. Using these error bounds, we further design a family of provably convergent approximations to the solution gradient.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.