Abstract

A parabolic subalgebra $\mathfrak{p}$ of a complex semisimple Lie algebra $\mathfrak{g}$ is called a parabolic subalgebra of abelian type if its nilpotent radical is abelian. In this paper, we provide a complete characterization of the parameters for scalar generalized Verma modules attached to parabolic subalgebras of abelian type such that the modules are reducible. The proofs use Jantzen's simplicity criterion, as well as the Enright-Howe-Wallach classification of unitary highest weight modules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.