Abstract
The length $L(P)$ of a polynomial $P$ is the sum of the absolute values of the coefficients. For $P\in\mathbb{R}[x]$ the properties of $l(P)$ are studied, where $l(P)$ is the infimum of $L(PG)$ for $G$ running through monic polynomials over $\mathbb{R}$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Functiones et Approximatio Commentarii Mathematici
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.