Abstract
A simple physical model for long-duration gamma ray bursts (GRBs) is used to fit the redshift (z) and the jet opening-angle distributions measured with earlier GRB missions and with Swift. The effect of different sensitivities for GRB triggering is sufficient to explain the difference in the z distributions of the pre-Swift and Swift samples, with mean redshifts of <z> ~1.5 and <z>~2.7, respectively. Assuming that the emission properties of GRBs do not change with time, we find that the data can only be fitted if the comoving rate-density of GRB sources exhibits positive evolution to z >~ 3-5. The mean intrinsic beaming factor of GRBs is found to range from ~34-42, with the Swift average opening half-angle <\theta_j> ~10 degree, compared to the pre-Swift average of <\theta_j> ~7 degree. Within the uniform jet model, the GRB luminosity function is proportional to L^{-3.25}_*, as inferred from our best fit to the opening angle distribution. Because of the unlikely detection of several GRBs with z <~ 0.25, our analysis indicates that low redshift GRBs represent a different population of GRBs than those detected at higher redshifts. Neglecting possible metallicity effects on GRB host galaxies, we find that ~1 GRB occurs every 600,000 yrs in a local L_* spiral galaxy like the Milky Way. The fraction of high-redshift GRBs is estimated at 8-12% and 2.5-6% at z >= 5 and z >= 7, respectively, assuming continued positive evolution of the GRB rate density to high redshifts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.