Abstract

It is known from classical differential geometry that one can reconstruct a curve with (n-1) prescribed curvature functions, if these functions can be differentiated a certain number of times in the usual sense and if the first (n-2) functions are strictly positive. It is established here that this result still holds under the assumption that the curvature functions belong to some Sobolev spaces, by using the notion of derivative in the distributional sense. It is also shown that the mapping which associates with such prescribed curvature functions the reconstructed curve is of class ${\mathcal C}^\infty$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.