Abstract
ABSTRACTReconstructing magnetizations from measurements of the generated magnetic potential is generally non-unique. The non-uniqueness still remains if one restricts the magnetization to those induced by an ambient magnetic dipole field (i.e. the magnetization is described by a scalar susceptibility and the dipole direction). Here, we investigate the situation under the additional constraint that the susceptibility is either spatially localized in a subregion of the sphere or that it is band-limited. If the dipole direction is known, then the susceptibility is uniquely determined under the spatial localization constraint while it is only determined up to a constant under the assumption of band-limitedness. If the dipole direction is not known, uniqueness is lost again. However, we show that all dipole directions that could possibly generate the measured magnetic potential need to be zeros of a certain polynomial which can be computed from the given potential. We provide examples of non-uniqueness of the dipole direction and examples on how to find admissible candidates for the dipole direction under the spatial localization constraint.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.