Abstract

This paper presents a novel approach to real-time modeling of disk temperature distribution using proper orthogonal decomposition (POD). The method combines singular value decomposition (SVD) techniques with a series of low-order transfer functions to predict the disk's thermal response over a typical flight. The model uses only typically available full authority digital electronic control (FADEC) measurements to predict temperature with accuracy of ±30 K over the whole flight cycle. A Kalman filter has also been developed based on a single temperature measurement, and the location of the measurement has been assessed in order to select the most appropriate target for instrumentation. Points all around the front and back of the disk have been assessed, and the best practice result is found to be near the center of the disk neck. This represents a compromise between matching the fast dynamic response of the rim, with the slower dynamics of the cob. The new model has been validated against an independent flight simulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call