Abstract
The pulsed-field-ionization zero-kinetic-energy photoelectron spectrum of Xe(2) has been measured between 97 350 and 108 200 cm(-1), following resonant two-photon excitation via selected vibrational levels of the C 0(u) (+) Rydberg state of Xe(2). Transitions to three of the six low-lying electronic states of Xe(2) (+) could be observed. Whereas extensive vibrational progressions were observed for the transitions to the I(32g) and I(32u) states, only the lowest vibrational levels of the II(12u) state could be detected. Assignments of the vibrational quantum numbers were derived from the analysis of the isotopic shifts and from the modeling of the potential energy curves. Adiabatic ionization energies, dissociation energies, and vibrational constants are reported for the I(32g) and the I(32u) states. Multireference configurational interaction and complete active space self-consistent field calculations have been performed to investigate the dependence of the spin-orbit coupling constant on the internuclear distance. The energies of vibrational levels, measured presently and in a previous investigation (Rupper et al., J. Chem. Phys. 121, 8279 (2004)), were used to determine the potential energy functions of the six low-lying electronic states of Xe(2) (+) using a global model that includes the long-range interaction and treats, for the first time, the spin-orbit interaction as dependent on the internuclear separation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.