Abstract

Let $\mathcal{G}(z):=\sum_{n\geqslant0} z^{2^{n}}(1-z^{2^{n}})^{-1}$ denote the generating function of the ruler function, and $\mathcal {F}(z):=\sum_{n\geqslant} z^{2^{n}}(1+z^{2^{n}})^{-1}$ ; note that the special value $\mathcal{F}(1/2)$ is the sum of the reciprocals of the Fermat numbers $F_{n}:=2^{2^{n}}+1$ . The functions $\mathcal{F}(z)$ and $\mathcal{G}(z)$ as well as their special values have been studied by Mahler, Golomb, Schwarz, and Duverney; it is known that the numbers $\mathcal {F}(\alpha)$ and $\mathcal{G}(\alpha)$ are transcendental for all algebraic numbers α which satisfy 0<α<1. For a sequence u, denote the Hankel matrix $H_{n}^{p}(\mathbf {u}):=(u({p+i+j-2}))_{1\leqslant i,j\leqslant n}$ . Let α be a real number. The irrationality exponent μ(α) is defined as the supremum of the set of real numbers μ such that the inequality |α−p/q|<q −μ has infinitely many solutions (p,q)∈ℤ×ℕ. In this paper, we first prove that the determinants of $H_{n}^{1}(\mathbf {g})$ and $H_{n}^{1}(\mathbf{f})$ are nonzero for every n⩾1. We then use this result to prove that for b⩾2 the irrationality exponents $\mu(\mathcal{F}(1/b))$ and $\mu(\mathcal{G}(1/b))$ are equal to 2; in particular, the irrationality exponent of the sum of the reciprocals of the Fermat numbers is 2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.