Abstract

The model for the cuprates based on the modified electron-phonon pairing mechanism has been tested. For this purpose, the superconductors with high value of the critical temperature have been taken into consideration. In particular: ${\rm YBa_{2}Cu_{3}O_{7-y}}$, ${\rm HgBa_{2}CuO_{4+y}}$, ${\rm HgBa_{2}Cu_{1-x}Zn_{x}O_{4+y}}$, and ${\rm HgBa_{2}Ca_{2}Cu_{3}O_{8+y}}$. It has been shown that the dependence of the ratio $R_{1}\equiv 2\Delta_{tot}^{(0)}/k_{B}T_{C}$ on the doping ($p$) can be properly predicted in the framework of the presented theory; the symbol $\Delta_{tot}^{(0)}$ denotes the energy gap amplitude at the temperature of zero Kelvin, and $T_{C}$ is the critical temperature. The numerical results have been supplemented by the formula which describes the function $R_{1}(p)$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.