Abstract

Asymptotic distributions of test statistics under alternatives are important from the point of view of their power properties. When the limiting distributions of test statistics are specified under the hypothesis in a certain sense, LeCam's third lemma ([4], Chapter 6) enables one to obtain their limiting distributions under close alternatives. In this paper we generalize LeCam's third lemma by using the rate of convergence in the case of asymptotically efficient test statistics. A general lemma is proved which is specified to linear combinations of order statistics (L-statistics) and linear rank statistics (R-statistics). Edgeworth-type asymptotic expansions for these statistics under alternatives are considered in [3].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.