Abstract
This study investigates the convergence patterns and the rates of convergence of binomial Greeks for the CRR model and several smooth price convergence models in the literature, including the binomial Black–Scholes (BBS) model of Broadie M and Detemple J (1996), the flexible binomial model (FB) of Tian YS (1999), the smoothed payoff (SPF) approach of Heston S and Zhou G (2000), the GCRR-XPC models of Chung SL and Shih PT (2007), the modified FB-XPC model, and the modified GCRR-FT model. We prove that the rate of convergence of the CRR model for computing deltas and gammas is of order O(1/n), with a quadratic error term relating to the position of the final nodes around the strike price. Moreover, most smooth price convergence models generate deltas and gammas with monotonic and smooth convergence with order O(1/n). Thus, one can apply an extrapolation formula to enhance their accuracy. The numerical results show that placing the strike price at the center of the tree seems to enhance the accuracy substantially. Among all the binomial models considered in this study, the FB-XPC and the GCRR-XPC model with a two-point extrapolation are the most efficient methods to compute Greeks. © 2010 Wiley Periodicals, Inc. Jrl Fut Mark
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.