Abstract

We consider the time evolution of quantum states by many-body Schr\"odinger dynamics and study the rate of convergence of their reduced density matrices in the mean field limit. If the prepared state at initial time is of coherent or factorized type and the number of particles $n$ is large enough then it is known that $1/n$ is the correct rate of convergence at any time. We show in the simple case of bounded pair potentials that the previous rate of convergence holds in more general situations with possibly correlated prepared states. In particular, it turns out that the coherent structure at initial time is unessential and the important fact is rather the speed of convergence of all reduced density matrices of the prepared states. We illustrate our result with several numerical simulations and examples of multi-partite entangled quantum states borrowed from quantum information.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.