Abstract
As proved by Hilbert, it is, in principle, possible to construct an arbitrarily close approximation in the Hausdorff metric to an arbitrary closed Jordan curve Γ in the complex plane {z} by lemniscates generated by polynomials P(z). In the present paper, we obtain quantitative upper bounds for the least deviations H n (Γ) (in this metric) from the curve Γ of the lemniscates generated by polynomials of a given degree n in terms of the moduli of continuity of the conformal mapping of the exterior of Γ onto the exterior of the unit circle, of the mapping inverse to it, and of the Green function with a pole at infinity for the exterior of Γ. For the case in which the curve Γ is analytic, we prove that H n (Γ) = O(q n ), 0 ≤ q = q(Γ) < 1, n → ∞.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.