Abstract
It is well known that the rate of aging is constant for populations described by the Gompertz law of mortality. However, this is true only when a population is homogeneous. In this note, we consider the multiplicative frailty model with the baseline distribution that follows the Gompertz law and study the impact of heterogeneity on the rate of aging in this population. We show that the rate of aging in this case is a function of age and that it increases in (calendar) time when the baseline mortality rate decreases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.