Abstract
Brown adipose tissue mitochondria predominantly oxidize fatty acids in order to generate heat for non-shivering thermogenesis, and have an unusually high capacity for net transfer of long-chain fatty acyl groups from the outer to the inner (matrix) compartment. The activities of the “outer” and “inner” carnitine long-chain acyltransferases have been estimated in isolated mitochondria of cold-acclimated guinea pigs by the continuous spectrophotometric recording of the redox level of flavoproteins in the acyl-CoA dehydrogenase pathway. This redox level is determined by the intramitochondrial content of acyl-CoA under the selected experimental conditions. The apparent initial rate of the “inner” acyltransferase (palmitoyl- l-carnitine added) is three order of magnitudes higher than the “outer” acyltransferase (palmitoyl-CoA added), and this difference is not influenced by the substrate concentration, pH and reaction temperature. Thus, the “outer” acyltransferase reaction is rate limiting in the transfer of long-chain acyl groups across the inner membrane of these mitochondria and catalyzes a non-equilibrium reaction in the intact organelle. Estimates of the absolute rate of the “outer” long-chain acyltransferase indicate that it exceeds that of rat liver mitochondria by a factor of 20.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: BBA - Bioenergetics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.