Abstract

The calculation of matrix elements involving nonorthogonal orbitals is speeded up by recognizing the orthogonalities between orbitals, leading to generalized Slater rules. The block structure present in the overlap matrix makes an efficient evaluation of its cofactors possible. These cofactors are calculated per subblock, each with its own parity sign. An adjustment parity sign has to be evaluated, which is added to the combined local signs, to give the correct total sign for the matrix element. An algorithm for the evaluation of this adjustment sign has been developed, making an easy and correct evaluation possible. The current scheme is shown to be very efficient, but possibilities for further improvement remain. © 1998 John Wiley & Sons, Inc. Int J Quant Chem 67: 77–83, 1998

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.